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LETTER TO THE EDITOR 

The Green function and thermodynamical properties of 
quadratic systems 

V V Dodonov, I A Malkin and V I Man’ko 
P N Lebedev Institute of Physics. Leninsky Prospect. 53, Moscow, USSR 

Received 11 December 1974 

Abstract. The explicit expression for the Green function of the quantum system with the 
Hamiltonian which is the most general quadratic form of coordinates and momenta with 
time-dependent coefficients is obtained. The thermodynamical properties of systems with 
quadratic Hamiltonians are briefly discussed. 

During recent years many interesting papers concerning different properties of quantum 
systems with Hamiltonians which are quadratic forms of coordinates and momenta 
have appeared (see eg Moshinsky and Quesne 1971, Boon and Seligman 1973, Papadop- 
oulos 1974a,b, Titulaer 1973). However, up to now the explicit expression for the 
Green function (GF) of the most general quadratic system (including linear terms) has 
not been written anywhere, though the Green functions of different special examples of 
such systems were obtained in many papers. In this letter we want to remove this gap. 
Knowledge of the GF allows us to give exact solutions to many interesting physical 
problems which can be reduced to studying the systems with quadratic Hamiltonians, 
among these problems are those connected with the thermodynamical properties of 
quadratic systems. The detailed investigation of these problems will form the substance 
of following publications, so that here we shall only briefly discuss them, from the 
viewpoint of possible applications of the exact GF obtained. 

For the first time the GF of the general non-stationary quadratic system was obtained 
by Malkin et a1 (1971, 1973) with the aid of the coherent states method. However, the 
result was not given in a form suitable for applications. Here we shall obtain the GF 
using the connection between the Green function and the integrals of the motion. We 
call the integral of the motion an operator f which transforms every solution of the 
Schrodinger equation again into a solution of the same equation. Consequently, f must 
satisfy in the space of the solutions of the Schrodinger equation $, the equation 
[ih(?/?t)-E?, f]$ = 0. Note that the Hamiltonian fi need not be Hermitian. One can 
easily verify that the operators 3 = 0 3 0 - l  and = Oj3@’, where 0 is the evolution 
operator (the kernel of this operator is the Green function), are integrals of the motion. 
The physical meaning of these operators is quite lucid : they determine the initial points 
of the trajectory in the phase space of the system. Let us note now that at the initial 
moment t = 0 the GF (in the coordinate representation) coincides with the eigenfunction 
of the operator i:G(x,,x,;O) = d(x,-x,), so that G(x,,x,:t) = llG(x,,x,;O). At 
the same time 3 = f(r = 0). Consequently, the GF is the eigenfunction of the integral 
of the motion f: 

(10) ~ ‘ G ( X , ,  x1 ; t )  = x,G(x,, x1 ; t )  

L19 
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(the operator 2 in this equation acts only on the variable x2, while the variable x1 
should be considered as a parameter). 

Using similar reasonings one can derive the second equation for the GF : 

(1b) 
2 

BG(x,, x1 ; t )  = ih-G(x,, x1 : t). 
Sx 1 

Equations (la)-(lb) determine the GF up to a phase factor depending on time. To 
calculate this factor one should substitute the GF into the Schrodinger equation and 
take into account the initial condition. 

The most general quadratic Hamiltonian with N degrees of freedom has the following 
form : 

= idB(tM + C(tM + 4(t); 

One can always assume that the 2N x 2N matrix B is symmetrical. However, it is 
not necessarily real, nor is the 2N-dimensional vector C, since the Hamiltonian may be 
a non-Hermitian operator. One can easily verify that the integrals of the motion 2 
and P are linear functions of the operators P and j l :  

A = A C B ;  A(t)  = i e x p (  CBdr) ; C = 11 -:, 7) : 
A(t)  = ACCdT J: (3) 

(E,js the N-dimensional unity matrix). I t  can be shown that A is a simplectic matrix: 
ACA = C. Equations (la-b) together with the Schrodinger equation lead to the 
following expression for the GF of the general quadratic system (for details of calculations 
see Dodonov et al 1974b: we confine ourselves here to the simplest case det E., # 0): 

G(x,, x1  : r )  = ( -  2xih)-"'(det ,I3)- ' " exp[ -&(x2A; lE.,x, - 2x,,l; lx, 

(4) 

A similar expression but without the important phase factor was given by Boon 
and Seligman (1973). Therefore, the study of an arbitrary quadratic system is reduced 
to the calculation of the matrix A ( t )  and vector A(t). 

The equilibrium density matrix p ( x 2 ,  x1 ; T )  of an arbitrary quadratic system with 
a stationary Hermitian Hamiltonian can be obtained from equation (4) by the sub- 
stitution t = -ihT- ' ,  T being the absolute temperature. To obtain the thermo- 
dynamical characteristics of the system one has to know the partition function. ie the 
trace of the density matrix (ter Haar 1961). In the case of Maxwell-Boltzmann statistics 
the partition function can be calculated without difficulty. since the trace of the density 
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matrix (4) is a Gaussian integral. If the system considered is an ideal gas in uniform 
external electric and magnetic fields and the internal degrees of freedom of a particle 
can be described by a quadratic Hamiltonian, then the thermodynamical character- 
istics of the system can be calculated in the case of Fermi-Dirac and Bose-Einstein 
statistics too. 

Indeed, the one-particle density matrix in this case has the form (4), so that the one- 
particle partition function Z ( j )  can be easily obtained ( p  = ( k T ) - ' ) .  After this the 
R potential of the system (R = - PV, P is the pressure, V is the volume of the container) 
can be calculated with the aid of the following relation (Rumer 1948. Dodonob et a1 
1974b) : 

Here q is the chemical potential, and the parameter -y equals zero for fermions and 
unity for bosons. 

Let us consider the special case of the general quadratic system, when the matrix B 
is positive definite. In this case the quadratic form in the argument of the exponent in 
equation (4) is non-degenerate. Therefore the characteristic function (Louisell 1964) of 
any operator A which is an arbitrary linear combination of the operators P and has 
the form of an exponential of a quadratic form: 

xcs  ; 2 1 = ( exp( i0  1) = [SP P ( P ) I  - SP[P exp(iE/? )I = exp( - S ~ S  + it,) ; 
I =  ( A ) ;  h = iihikii ; (6) 

where the coefficients hi, and I,. i, k = 1 ,2 , .  . . , N ,  can be easily expressed in terms of 
the elements of the matrix A and the vector A. 

Since the characteristic function is the generating function for the moments of the 
operators d, , j  = 1,2. .  . . . N ,  equation (5) shows that all these moments can be expressed 
in terms of Hermite polynomials of many variables : 

(7)  
where the matrix C defining these polynomials (Bateman Manuscript Project 1953) is 
equal to - 2 h  (for simplicity we assume here that all operators 2, commute with each 
other). Evidently, the Fourier transform of the function ~ ( 4 ;  A) is again an exponential 
of a quadratic form. But this transformation yields the probability distribution of the 
eigenvalues of the operators 2, (provided [a,, a,] = 0, j ,  k = 1,2, .  . . , N )  (Louisell 
1964), so that we have proved the following theorem (for the first time it was proved 
by Bloch 1932 for the one-dimensional oscillator). 

1h- 1 
* A  

( 4 ' A Y .  ' ' 2 7 )  = Hnl .n2 . , ,  .J- i  4 

The generalized Bloch theorem. If a system has an arbitrary quadratic positive definite 
Hamiltonian, then in the thermal equilibrium state the probability distribution of the 
eigenvalues of any real linear combination of coordinates and momenta has the 
Gaussian form. 

To consider a non-equilibrium quadratic system one should suppose this system to 
interact with a large reservoir (both reservoir and interaction Hamiltonians must be 
quadratic too). At the initial moment let the extended system be in the equilibrium 
state. Then one can switch on a time-dependent external field and calculate the density 
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matrix of the extended system at an arbitrary moment t > 0 with the aid of the exact 
GF (4). After this one has only to integrate the complete density matrix over the vari- 
ables of the reservoir. and the non-equilibrium density matrix of the system under study 
will be obtained in a closed form, since all integrals will be Gaussian. The method 
described has been already applied to a quadratic system of a special kind by Papa- 
dopoulos (1974b). 

As to non-quadratic systems, we can note that using the Baker-Hausdorff formula 

(8) 

one can obtain approximate expressions for the integrals of the motion r? and P and 
consequently for the density matrix of any system. In the special case 

1 2 = exp( - pA)i exp(pA) = 2 - p[A, i ]  + %( - p)’[A, [A, i ] ]  + . . . 

A = f i 2 ,  2m + +mw2(t)s2 + g s  - ‘ 
the Green function can be calculated exactly (Dodonov et al 1974a) 

The authors thank E S Fradkin and M A Markov for helpful discussions. 
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